
Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 1 -

Files & Streams

 To store data, we are using variables within our programs. But the
data what we stored in these variables will be lost either when a variable
goes out of its scope or when the program is terminated, because they are
stored in primary memory which is volatile in nature. And it is very difficult to
handle large volumes of data using variables.

 To overcome this, the data should be stored in secondary memory
devices like hard disk in the form of files. The data stored in the form of files
is called persistent data.

 A file is a named collection of related information that is recorded on
secondary storage. From user’s perspective, a file is the smallest allotment of
logical secondary storage that is data can’t be written to secondary storage
unless they are within a file.

Commonly files represent programs (both source and object forms)
and data. Data files may be numeric, alphabetic, alphanumeric or binary. In
general, a file is a sequence of bits, bytes, line or records. A text file is a
sequence of characters organized into lines. A source file is a sequence of
subroutines and functions, each of which is further organized as declarations
followed by executable statements. An object file is a sequence of bytes
organized into blocks understandable by the system’s linker. An executable
file is a series of code sections that the loader can bring into memory and
execute.

Thus, a file is a collection of related records. A record is composed of

several fields and a field is a group of characters. Storing and managing
data using files is known as file processing. In java reading and writing of
data in a file can be done at the level of bytes or characters. Java provides
capabilities to read and write class objects directly. The process of reading
and writing objects is known as Object Serialization.

Streams

 A stream is an ordered sequence of data which is flowing between
source and destination. In Java, a stream is an object oriented interface
between the program and the input / output devices. Input refers to the flow
of data into a program and output means the flow of data out of a program.

 Java streams are classified into two basic types: Input Stream and
Output Stream. Input Stream extracts (reads) data from the source and
sends it to the program. Similarly, Output Stream takes data from the

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 2 -

program and sends (writes) it to the destination. The source or destination
may be either a file or memory or even a device.

Stream Classes

 The java.io package contains many number of stream classes that
provide capabilities for processing all types of data. These classes are
categorized into 2 groups based on the data type on which they operate.
They are Byte Stream Classes and Character Stream Classes.

 Byte Stream classes provide support for handling I/O operations
on bytes (Binary Files).

 Character Stream classes provide support for managing I/O

operations on characters (Text Files).

While executing a program, Java creates three stream objects that are

associated with devices. They are:

 System.in Standard input stream object (Key Board)

 System.out Standard output stream object (Monitor)

 System.err Standard error stream object (Monitor)

Source Input Stream Program
Reads

Destination Output Stream Program

Writes

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 3 -

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 4 -

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 5 -

List of tasks and Classes implementing them

Task Byte Stream Class Character
Stream Class

Performing input operations InputStream Reader

Reading from files FileInputStream FileReader

Reading from a string StringBufferInputStream StringReader

Reading from primitive types DataInputStream None

Performing output operations OutputStream Writer

Writing to a file FileOutputStream FileWriter

Printing values & Objects PrintStream PrintWriter

Writing to a string None StringWriter

Writing primitive types DataOutputStream None

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 6 -

The File Class:

 The java.io package includes a class named File which provides
support for creating files and directories. This class contains several
constructors and methods for supporting the file operations like creating,
opening, closing, deleting, renaming, getting the file name, etc …

Method Description
boolean canRead() Returns true if the file is readable
boolean canWrite() Returns true if the file is writable
boolean exists() Returns true if it exists
boolean isFile() Returns true if it is a file
boolean isDirectory() Returns true if it is a directory
boolean isAbsolute() Returns true if the path is absolute
String getAbsolutePath() Returns a string with the absolute path of

the file or directory
String getName() Returns a string with the name
String getPath() Returns a string with the path
String getParent() Returns a string with the parent directory
String[] list() Returns an array of strings representing the

list files and folders in the directory
long length() Returns the length of the file in bytes.
long lastModified() Returns the time at which it was last

modified
boolean renameTo(File dest) Renames the file object to dest.

Constructors of File Class:

 File(String name)

 File(String path, String name)

 File(File directory, String name)

 File(URI url)

Program to display the list of files & directories in a given directory

import java.io.File;

public class DOSDir
{
 public static void main(String args[]) throws Exception
 {
 File f1=new File(args[0]);
 String a[]=f1.list();
 int x=a.length;

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 7 -

 System.out.printf("\nNo of directories and files under %s are :
 %5d\n",args[0],x);

 for(int i=0;i<x;i++)
 {
 String fname=a[i];
 File f2=new File(f1,fname);

 if(f2.isDirectory())
 System.out.printf("\n%5d. %-45s is a Directory",i+1,fname);

 if(f2.isFile())
 System.out.printf("\n%5d. %-45s is a File",i+1,fname);
 }
 }
}

Sample Output:

>java DOSDir c:\jsdk2.0
No of directories and files under c:\jsdk2.0 are : 7
 1. DeIsL1.isu is a File
 2. README is a File
 3. src is a Directory
 4. doc is a Directory
 5. examples is a Directory
 6. bin is a Directory
 7. lib is a Directory

SEQUENTIAL ACCESS FILES:

As the name tells that the records in a sequential file are stored

sequentially in the logical sequence of their primary key or record key values.
The disadvantages of Sequential files are as follows.

 Updating a record requires the creation of a new file. To maintain
file sequence, the records of the original file are copied to the new
file to the point where we need modification. Then changes are
made to the record and copied into the new file. Following this, the
remaining records of the original file are copied to the new file.

 Adding a record necessitates the shifting of records from the

appropriate point to the end of the file to create space for the new
record.

 Deleting a record requires a compression of the file space.

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 8 -

But, these files are suitable for the situations where we need to access
each and every record of the file sequentially. It is not possible to read and
write a sequential file at the same time. In a program, if it is necessary to
read the file again, we should first close that file and reopen it. Searching
for a record in these files is a time consuming job, if the file size is very
large.

BUFFERED STREAMS:

In unbuffered I/O streams, each read or write request is handled

directly by the underlying Operating System. This makes a program much
less efficient, since each such request triggers disk access, network activity
which is relatively expensive.

Buffered Streams can be used to reduce this overhead. These streams

can read data from or write data to a memory area known as buffer. When
the buffer is full, the data will be written to the disk. Similarly when the
buffer is empty, the data will be taken from the disk.

There are four buffered stream classes available in java. They are:

 BufferedInputStream

 BufferedOutputStream

 BufferedReader

 BufferedWriter

Program to Simulate COPY command of DOS with the help of Streams

import java.io.*;

public class DOSCopy
{

public static void main(String args[])
 {
 File src=new File(args[0]);
 File trgt=new File(args[1]);
 int k;
 try
 {
 FileOutputStream fos=new FileOutputStream(trgt);
 FileInputStream fis=new FileInputStream(src);
 while((k=fis.read())!=-1)
 {
 fos.write((char)k);
 }

Byte Stream Classes

Character Stream Classes

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 9 -

 System.out.printf("\n\tContents of %s are copied to
 %s",args[0],args[1]);
 System.out.printf("\n\tTo view the contents execute the
 following command at DOS Prompt");
 System.out.printf("\n\tTYPE %s\n\n",args[1]);
 fos.close();
 fis.close();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

Output:

>java DOSCopy abc doop

 Contents of abc are copied to doop

 To view the contents execute the following command at DOS Prompt

 TYPE doop

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 10 -

RANDOM ACCESS FILES:

In these files, the record key value is mapped directly to the storage

location so that we can access the records directly. Random Access files are
sometimes called Direct Access files, because we can access the individual
records of the file directly without searching through the entire records of the
file. These are suitable for instant-access applications, such as Banking
Systems, Reservation Systems and other Transaction Processing Systems, in
which a particular record of information must be located immediately. In
these files, the record length of the file should be fixed where as in
Sequential Access file the record length may be variable.

The java.io package contains a class named RandomAccessFile,

which performs all the operations on random access files. An object of this
class maintains a file pointer, which indicates the current location from which
data will be read or to which data will be written.

We can perform both read and write operations simultaneously on a

RandomAccessFile, if we open it in “rw” mode.

Methods of the RandomAccessFile

RandomAccessFile (String f-name, String mode)

RandomAccessFile (File f-name, String mode)

long getFilePointer() returns the current position of file pointer.

void seek(long) jumps the cursor to the required byte.

int skipBytes(int) moves the file pointer forward to the
 specified number of bytes

Program on Random Access Files

import java.io.*;
import java.lang.*;

public class StudRAF
{
 RandomAccessFile rf;

 String name;
 int rno,m1,m2,m3,total;

 public static final int recSize=60;

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 11 -

public StudRAF() throws FileNotFoundException, IOException
{
 rf=new RandomAccessFile("stud.txt","rw");
}

public StudRAF(String s) throws FileNotFoundException,

 IOException
{
 rf=new RandomAccessFile(s,"rw");
}

public void createBlankRecords(int n) throws IOException
{
 rf.seek(rf.length());
 for(int i=0;i<n;i++)
 {
 rf.writeInt(0);
 for(int j=0;j<20;j++)
 rf.writeChar('\n');
 rf.writeInt(0);
 rf.writeInt(0);
 rf.writeInt(0);
 rf.writeInt(0);
 }
}

public void writeToRAF() throws IOException
{
 String resp;
 DataInputStream dis=new DataInputStream(System.in);
 do
 {
 System.out.println("\nEnter Rno,Name,M1,M2,M3:");
 rno=Integer.parseInt(dis.readLine());
 if(rno*60<=rf.length())
 {
 name=dis.readLine();
 m1=Integer.parseInt(dis.readLine());
 m2=Integer.parseInt(dis.readLine());
 m3=Integer.parseInt(dis.readLine());
 total=m1+m2+m3;
 rf.seek((rno-1)*60);
 rf.writeInt(rno);
 char ch;
 for(int i=0;i<20;i++)
 {
 ch='\n';
 if(i<name.length())
 ch=name.charAt(i);
 rf.writeChar(ch);
 }

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 12 -

 rf.writeInt(m1);
 rf.writeInt(m2);
 rf.writeInt(m3);
 rf.writeInt(total);
 }
 else
 {
 System.out.println("\nThere is not enough blank

 space to insert this record");
 System.out.println("Create blanks records, then

 proceed. ");
 }

 System.out.printf("\n\tDo U want 2 Add one more record

 y / n:");
 resp=dis.readLine();
 }
 while(resp.equalsIgnoreCase("y"));
}

public void readFromRAF() throws IOException
{
 String resp;
 DataInputStream dis=new DataInputStream(System.in);

 boolean isExists=true;
 do
 {
 System.out.println("Which Record U want : ");
 int recno=Integer.parseInt(dis.readLine());
 try
 {
 rf.seek((recno-1)*60);

 rno=rf.readInt();
 if(rno!=0)
 {
 StringBuffer sb=new StringBuffer(20);
 int i=0;
 boolean proceed=true;
 while(proceed && i<20)
 {
 char ch=rf.readChar();
 i++;
 if(ch=='\n')
 proceed=false;
 else
 sb.append(ch);
 }
 name=sb.toString();
 rf.skipBytes((20-i)*2);

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 13 -

m1=rf.readInt();
m2=rf.readInt();
m3=rf.readInt();
total=rf.readInt();
System.out.printf("\n%-20s: %d","Roll Number",rno);
System.out.printf("\n%-20s: %s","Name",name);
System.out.printf("\n%-20s: %d","SUB-1",m1);
System.out.printf("\n%-20s: %d","SUB-2",m2);
System.out.printf("\n%-20s: %d","SUB-3",m3);
System.out.printf("\n%-20s: %d\n","Toatl Marks",total);

System.out.println("\nU are at "+rf.getFilePointer()+" byte");
}
else
{
 rf.skipBytes(56);
 System.out.println("\nNo Such Record");
}
}
catch(EOFException e)
{
 System.out.println("No such Record");
}
System.out.printf("\n\tDo U want 2 search y / n :");
resp=dis.readLine();
}
while(resp.equalsIgnoreCase("y"));
}

public void readRAFSequentially() throws IOException
{
 rf.seek(0);
 boolean hasRecords=true;
 do
 {
 try
 {
 rno=rf.readInt();
 if(rno!=0)
 {
 StringBuffer sb=new StringBuffer(20);
 int i=0;
 boolean proceed=true;
 while(proceed && i<20)
 {
 char ch=rf.readChar();
 i++;
 if(ch=='\n')
 proceed=false;
 else
 sb.append(ch);
 }

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 14 -

 name=sb.toString();
 rf.skipBytes((20-i)*2);
 m1=rf.readInt();
 m2=rf.readInt();
 m3=rf.readInt();
 total=rf.readInt();
 System.out.printf("\n%-20s: %d","Roll Number",rno);
 System.out.printf("\n%-20s: %s","Name",name);
 System.out.printf("\n%-20s: %d","SUB-1",m1);
 System.out.printf("\n%-20s: %d","SUB-2",m2);
 System.out.printf("\n%-20s: %d","SUB-3",m3);
 System.out.printf("\n%-20s: %d\n","Toatl Marks",total);
}
else
 rf.skipBytes(56);
}
catch(EOFException e)
{
 hasRecords=false;
 System.out.println("\n End - of - File ");
}
}
while(hasRecords);
}

public void closeRAF() throws Exception
{
 rf.close();
}

public void dispFileSize() throws IOException
{
 long fileSize=rf.length();
 float fileSizeinKB=(float)(fileSize/1024.0);
 long noOfRecords=rf.length()/(long)(recSize);
 System.out.print("\nThe size of the file in KBs :

 "+fileSizeinKB);
System.out.print("\nAnd it can hold upto "+noOfRecords+"
 Records");

}
}

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 15 -

import java.io.*;
class DemoStudRAF
{
 public static void main(String args[]) throws IOException,

 Exception
 {
 StudRAF sraf=new StudRAF(args[0]);
 DataInputStream dis=new DataInputStream(System.in);
 int choice;

 do
 {
 System.out.println("\n\n1.Create New BlankRecords\n2.Write

 \n3.Search for a Record\n4.Read Sequentially\n5.Dispaly
 File Size\n0.Quit\n");

 System.out.print("Enter U r Choice : ");
 choice=Integer.parseInt(dis.readLine());
 switch(choice)
 {
 case 0:
 sraf.closeRAF();
 System.exit(1);
 case 1:
 System.out.print("\nHow many records u want 2 create : ");
 int rec=Integer.parseInt(dis.readLine());
 sraf.createBlankRecords(rec);
 break;
 case 2:
 sraf.writeToRAF();
 break;
 case 3:
 sraf.readFromRAF();
 break;
 case 4:
 sraf.readRAFSequentially();
 break;
 case 5:
 sraf.dispFileSize();
 break;
 default:
 System.out.println("Enter a valid Choice");
 }
}
while(true);
}
}

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 16 -

OBJECT SERIALIZATION:

Java provides capabilities to read and write class objects directly. The
process of reading and writing objects is known as Object Serialization. To
achieve Object Serialization, the class should implement the interface
Serializable of java.io package. The classes ObjectInputStream and
ObjectOutputStream of java.io package provide methods to read one
object from or write one object to a sequential file respectively.

import java.io.Serializable;
public class Employee implements Serializable
{
 private int empno;
 private String ename;
 private double salary;

 public Employee()
 {
 this(0,"",0.0);
 }
 public Employee(int eno, String enm, double sal)
 {
 empno=eno;
 ename=enm;
 salary=sal;
 }
 public void display()
 {
 System.out.printf("\n%-20s : %d\n","Emp No",empno);
 System.out.printf("%-20s : %s\n","Emp Name",ename);
 System.out.printf("%-20s : %8.2f\n","Salary",salary);
 }
}

import java.io.*;
import java.util.Scanner;
import java.lang.ClassNotFoundException;
public class OIPOPS
{

public void writeToFile(String fname) throws
FileNotFoundException, IOException, ClassNotFoundException

 {
 ObjectOutputStream oos=new ObjectOutputStream(

new FileOutputStream(fname));
 Scanner input=new Scanner(System.in);
 int eno;
 String enm;
 double sal;
 System.out.println("Enter EmpNo, EmpName, Salary");
 System.out.println("Press F6 to Quit");

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 17 -

 do
 {
 try
 {
 eno=input.nextInt();
 enm=input.next();
 sal=input.nextDouble();
 Employee empRec=new Employee(eno,enm,sal);
 oos.writeObject(empRec);
 }

 catch(Exception e)
 {
 input.nextLine();
 }
 }
 while(input.hasNext());
 oos.close();
 }

public void readFromFile(String fname) throws
FileNotFoundException, IOException, ClassNotFoundException

 {
 ObjectInputStream ois=new ObjectInputStream(

new FileInputStream(fname));
 Employee empRec;
 try
 {
 while(true)
 {
 empRec=(Employee)ois.readObject();
 empRec.display();
 }
 }
 catch(EOFException e)
 {
 ois.close();
 return;
 }
 }
}

import java.io.*;
public class DemoObjectStreams
{
 public static void main(String a[])
 {
 OIPOPS object=new OIPOPS();
 DataInputStream dis=new DataInputStream(System.in);
 System.out.println("\nMenu");

Adv. Java Files & Streams

Prepared by M. Ramanakar, Lect. in Comp. Science, KCCS, Warangal - 18 -

 System.out.println("======");
 System.out.println("1.Add Records\n2.Read Records");
 try
 {
 System.out.print("Enter Ur Choice :");
 int choice=Integer.parseInt(dis.readLine());
 switch(choice)
 {
 case 1:
 object.writeToFile(a[0]);
 break;

 case 2:
 object.readFromFile(a[0]);
 break;
 default:
 System.out.println("Not a valid
 option");
 }
 }
 catch(Exception e)
 {
 return;
 }
 }
}

